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Abstract 
A Deep Neural Network (DNN) is an artificial neural 

network (ANN) with multiple layers between the input 

and output layers. Recently, DNN has been 

extensively used for image recognition. The success of 

ResNets [12] and Dense Nets [17] is due in large part 

to their innovative wiring plans, however, the space of 

possible wirings is constrained and still driven by 

manual design despite being searched. In this paper, 

we proposed a stochastically generated DNN called 

Randwire with more diverse set of connectivity 

patterns. To do this, we first define the concept of a 

stochastic or random network generator that 

encapsulates the entire network generation process.  

Then, we use three different classical random graph 

models to generator and only wired graphs for 

networks.  Experimental results show that the 

proposed networks have competitive accuracy on the 

ImageNet benchmark. 

Keywords: Optical communications, optical 

crosstalk, optical losses, photonic 

interconnection networks, simulation software, 

system analysis and design. 

Introduction 

DNN can outperform many conventional 

machine learning methods, due to the increased 

amount of training data, more powerful 

computing resources as well as dramatically 

increased model parameters. Deep learning today 

descends from the connectionist approach to 

cognitive science a paradigm reflecting the 

hypothesis that how computational networks are 

wired is crucial for building intelligent ma- 

chines. Echoing this perspective, recent advances 

in computer vision have been driven by moving 

from models with chain-like wiring to more 

elaborate connectivity patterns, e.g., ResNet and 

DenseNet that are effective in large part because 

of how they are wired. 

 

Advancing this trend, neural architecture 

search (NAS) has emerged as a promising 

direction for jointly searching wiring patterns 

and which operations to perform. NAS methods 

focus on search while implicitly relying on an 

important yet largely overlooked component that 

we call a network generator. The NAS network 

generator defines a family of possible wiring 

patterns from which networks are sampled 

subject to a learnable probability distribution. 

However, like the wiring patterns in ResNet and 

DenseNet, the NAS network generator is hand 

designed and the space of allowed wiring 

patterns is constrained in a small subset of all 

possible graphs. Given this perspective, we ask: 

What happens if we loosen this constraint and 

design novel net- work generators? 

We explore this question through the lens of 

randomly wired neural networks that are 

sampled from stochastic network generators, in 

which a human-designed random process defines 

generation. To reduce bias from us the authors of 

this paper on the generators, we use three 

classical families of random graph models in 

graph theory. To define complete net- works, we 

convert a random graph into a directed acyclic 

graph (DAG) and apply as implemapping from 

nodes to heir functional roles (e.g., to the same 

type of convolution). The results are surprising: 

several variants of these random generators yield 

networks with competitive accuracy on 
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ImageNet [40]. The best generators, which use 

the WS model, produce multiple networks that 

outperform or are comparable to their fully 

manually designed counter- parts and the 

networks found by various neural architecture 

search methods. We also observe that the 

variance of ac- curacy is low for different 

random networks produced by the same 

generator, yet there can be clear accuracy gaps 

between different generators. These observations 

suggest that the network generator design is 

important. 

We note that these randomly wired 

networks are not “prior free” even though they 

are random. Many strong priors are in fact 

implicitly designed into the generator, including 

the choice of a particular rule and distribution to 

control the probability of wiring or not wiring 

certain nodes together. Each random graph 

model has certain probabilistic behaviors such 

that sampled graphs likely exhibit certain 

properties (e.g., WS is highly clustered). 

Ultimately, the generator design determines a 

probabilistic distribution over networks, and as a 

result these networks tend to have certain 

properties. The generator design under lies the 

prior and thus should not be overlooked. 

Our work explores a direction orthogonal to 

concurrent work on random search for NAS. 

These studies show that random search is 

competitive in “the NAS search space”, i.e., the 

“NAS network generator” in our perspective. 

Their results can be understood as showing that 

the prior induced by the NAS generator design 

tends to produce good models, similar to our 

observations. In contrast to, our work goes 

beyond the design of established NAS generators 

and explores different random generator designs. 

Finally, our work suggests a new transition 

from designing an individual network to 

designing a network generatormay be possible, 

analogous to how our community has 

transitioned from designing features to designing 

a network that learns features. Rather than 

focusing primarily on search with a fixed 

generator, we suggest designing new network 

generators that produce new families of models 

for searching. The importance of the designed 

network generator (in NAS and elsewhere) also 

implies that machine learning has not been 

automated (c.f. “AutoML”) the underlying 

human design and prior shift from network 

engineering to network generator engineering. 

Experiments 

We conduct experiments on the ImageNet 

1000-class classification task [40]. We train on 

the training set with ∼1.28M images and test on 

the 50K validation images. 

 

Architecture Details 
 

Our experiments span a small computation 

regime (e.g., MobileNet and ShuffleNet) and a 

regular computation regime (e.g., ResNet-

50/101). Rand Wire nets in the se regimes, where 

N nodes and C channels determine network 

complexity. 

  

We set N =32, and then set C to the nearest 

integer such that target model complexity is met: 

C=78 in the small regime, and C=109 or 154 in 

the regular regime. 

 

Random Seeds 

 

For each generator, we randomly sample 5 

network instances (5 random seeds), train them 

from scratch, and evaluate accuracy for each 

instance. To emphasize that we perform no 

random search for each generator, we report the 

classification accuracy with “mean±std” for all 5 

random seeds (i.e., we do not pick the best). We 

use the same seeds 1, . . ., 5 for all experiments. 

Implementation details. We train our networks 

for 100 epochs, unless noted. We use a half-

period-cosine shaped learning rate decay. The 

initial learning rate is 0.1, the weight decay is 5e-

5, and the momentum is 0.9. We use label 

smoothing regularization with a coefficient of 

0.1. Other details of the training procedure are 

the same. 

 

Analysis Experiments 
 

Random graph generators, paper compares the 

results of different generators in the small 

computation regime: 

  

 

40 
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Each R and Wire net has ∼580M FLOPs. It 

visualizes one example graph for each generator. 

The graph generator is specified by the random 

graph model (ER/BA/WS) and 20 its set of 

parameters: e.g., ER (0.2). We observe: 0 output 

degree of removed node 

 

40 40 

 

20 20 

 

0 0 

  

All random generators provide decent accuracy 

over all 
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5 random network instances; none of them fails 

to converge. ER, BA, and WS all have certain 

settings that yield mean accuracy of >73%, 

within a <1% gap from the best mean accuracy 

of 73.8% from WS (4,0.75). 

 

Moreover, the variation among the random 

network in- stances is low. Almost all random 

generators input degree of removed edge's target 

node. We randomly remove one node (top) or 

remove one edge (bottom) from a graph after the 

network is trained, and evaluate the loss (∆) in 

accuracy on ImageNet. From left to right are ER, 

BA, and WS generators. Red circle: mean; gray 

bar: median; orange box: interquartile range; 

blue dot: an individual damaged instance. 

  

Have and standard deviation (std) of 

0.2∼0.4%. As a comparison, training the same 

instance of a ResNet-50 multiple times has a 

typical std of 0.1∼0.2% [11]. The observed low 

variance of our random generators suggests that 

even with- out random search (i.e., picking the 

best from several random instances), it is likely 

that the accuracy of a network instance is close 

to the mean accuracy, subject to some noise. 

 

On the other hand, different random 

generators may have a gap between the mean 

accuracies, e.g., BA(1) has 70.7% 

accuracyandis∼3%lowerthanWS(4,0.75).This 

suggests that random generator design, including 

the wiring priors (BAvs.WS) and generation 

parameters, plays an important role in the 

accuracy of sampled network instances. 

Figure 3 also includes a set of non-random 

generators: WS (K, P =0). “P =0” means no 

random rewiring. Interestingly, the results of 

WS(K,P=0) are all worse than their WS(K, P>0) 

counterparts for any fixed K in Figure3. 

Graph damage. We explore graph damage 

by randomly removing on 

enodeoredgeanablative setting inspired by. 

Formally, given a network instance after 

training, were move one node or one edge from 

the graph and evaluate the validation accuracy 

without any further training. 

When a node is removed, we evaluate the 

accuracy loss (∆) vs. the output degree of that 

node (Figure 5, top). It is clear that ER, BA, and 

WS behave differently under such damage. For 

networks generated by WS, the mean 

degradation of accuracy is larger when the output 

degree of the removed node is higher. This 

implies that “hub” nodes in WS that send 

information to many nodes are influential. 

 

When an edge is removed, we evaluate the 

accuracy loss vs. the input degree of this edge’s 

target node (bottom). If the input degree of an 

edge’s target node is smaller, removing this edge 

tends to change a larger portion of the target 

node’s inputs. This trend can be seen by the fact 

that the accuracy loss is generally decreasing 

along the x-axis in (bottom). The ER model is 

less sensitive to edge removal, possibly because 

in ER’s definition wiring of every edge is 

independent. 

 

Conclusion 
 

We explored stochastically wired neural 

networks driven by three classical random graph 

models from graph theory. The results were 

surprising: the mean accuracy of these models is 

competitive with hand-designed and optimized 

models from recent work on neural architecture 

search. Our exploration was enabled by the novel 

concept of a network generator. We hope that 

future work exploring new generator designs 

may yield new, powerful networks designs. 
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